
Tighten up your Drupal
code using PHPStan
Finding bugs before your end users do!

Matt Glaman
Maintainer of phpstan-drupal & drupal-check

/u/mglaman @nmdmatt mglaman.dev

PHPStan
PHP static analysis tool

PHPStan finds bugs in your
code without writing tests.

https://phpstan.org/

https://phpstan.org/

phpstan-drupal
Extension for PHPStan to
integrate with Drupal.

mglaman/phpstan-drupal

https://github.com/mglaman/phpstan-drupal

drupal-check
Wrapper around PHPStan
and phpstan-drupal for
generic config.

mglaman/drupal-check

https://github.com/mglaman/drupal-check

But first,
what about X?
Can your existing tools catch the typo in the method name?

Linting
● Using php -l you can lint

your code for syntax errors

● Great first step in your
continuous integration
pipelines

● Doesn’t catch typos or calls to
invalid methods

<?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

PHP CodeSniffer
● Uses token_get_all to

tokenize a given source code

● Analyzes files individually and
line by line

● Can detect calls to undesired
functions, but not classes

● Great for coding standards
and basic “code smell”
checks

● Keeps code tidy, doesn’t find
bugs.

<?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

Phan / Psalm <?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

● Phan is another static
analysis tool, which requires
the php-ast extension (From
Estsy)

● Psalm is another static
analysis tool, with security
analysis tools (From Vimeo)

● Drupal’s autoloading is
dynamic, unlike most PHP
applications. This makes it
difficult to work with other
tools

PHPStan
● Uses nikic/php-parser to

create an abstract syntax tree
of your code base.

● Verifies calls to classes and
their methods (class exists,
method visibility)

● Verifies types passed to
functions and methods

● Has a system for defining
dynamic returns types (and
Drupal is very dynamic!)

<?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

What PHPStan can
do for you!

PHPStan Rule Levels
● 0: unknown classes/functions/methods ($this), argument count, undefined variables

● 1: possibly undefined variables, unknown magic methods or properties

● 2: checks for unknown methods to all objects, validating PHPDocs

● 3: return types, types assigned to properties

● 4: dead code checking, redundant code

● 5: type checks of arguments passed to functions/methods

● 6: report missing typehints

● 7: report wrong method calls on union types (EntityInterface|NodeInterface),

● 8: report calling methods and accessing properties on nullable types

● 9: strict on mixed type usage

10.0.x
Drupal 10 is now running PHPStan at level 0

Let’s analyze the
example code with
PHPStan
(This is running PHPStan at level 2)

Call to an undefined method Drupal\Core\Entity\EntityInterface::isPublihed().

<?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

Call to an undefined method Drupal\Core\Entity\EntityInterface::isPublihed().

<?php

use Drupal\Core\Entity\EntityInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(EntityInterface $node): void {

 if ($node->isPublihed()) {

 }

}

?#!?!

isPublished comes from EntityPublishedInterface, which NodeInterface extends!

<?php

use Drupal\node\NodeInterface;

/**

* Implements hook_ENTITY_TYPE_insert().

*/

function mymodule_node_insert(NodeInterface $node): void {

 if ($node->isPublished()) {

 }

}

PHPStan &
Extensions

PHPStan & Extensions overview

PHPStan

● Checks that a class exists (can be
autoloaded)

● Detects incorrect namespacing

● Functions exists, methods on classes
exist and are visible

● Can resolve variable values and verify
their types (!!!)

phpstan-drupal

● Container services return the correct
types

● Entity storage and query return types

● Class resolver service return types

● Checking if using @internal classes

● Support for checking deprecated global
constants

PHPStan & Extensions overview

phpstan/phpstan-deprecation-rules

● PHPStan rules for detecting usage of
deprecated classes, methods,
properties, constants and traits.

● The special sauce used by the Drupal
community in drupal-check and the
Upgrade Status module.

phpstan/phpstan-phpunit

● PHPUnit extensions and rules for
PHPStan

● Uses assertions to understand types,
support for mocks, and more.

jangregor/phpstan-prophecy

● Provides a phpstan/phpstan extension
for phpspec/prophecy

● Makes PHPStan understand prophesied
mocks

Because you are all
developers and
want to play…

Adding PHPStan
to your Drupal
codebase
(What I run when setting up PHPStan for a Drupal code base)

phpstan/extension-installer
● Automatically configures PHPStan to use installed extensions

● Simplifies setting up PHPStan by not needing to include extension configurations

● Pssst: this is a problem drupal-check tried to solve for Drupal users, before the extension installer existed.

Use Composer to add PHPStan to require-dev

composer require --dev phpstan/phpstan \

 phpstan/extension-installer \

 mglaman/phpstan-drupal \

 phpstan/phpstan-deprecation-rules

Run PHPStan against custom modules

php vendor/bin/phpstan analyze \

 --level 2 \

 web/modules/custom

Adding PHPStan
to your Drupal
codebase
(how I do it)

Use Composer to add PHPStan to require-dev

composer require --dev phpstan/phpstan \

 phpstan/extension-installer \

 mglaman/phpstan-drupal \

 phpstan/phpstan-deprecation-rules \

 phpstan/phpstan-phpunit \

 jangregor/phpstan-prophecy

A basic phpstan.neon

parameters:

 level: 5

 paths:

 - web/modules/custom

 - web/themes/custom

Run PHPStan against custom modules (no arguments requires with `paths` defined)

php vendor/bin/phpstan

phpstan-drupal
Bringing PHPStan magic to Drupal ✨

Autoloading

Autoloading extensions and functions

● PHPStan supports path based autoloading, but the goal is to mimic the
Drupal bootstrap process

● Drupal has various includes for “legacy” functions not registered in its
autoloader

● All extension namespaces are registered at runtime with the autoloader
and their extension file loaded

● Loads files for hook includes (views.inc, tokens.inc, pathauto.inc)

● Loads Drush includes for functions as well

Service container

Services return types and deprecations

● Scans for all extensions and loads their extension file, along with
registering their services.yml definitions.

● A service map is maintained to allow rules and return type extensions to
interact with services that would exist in Drupal’s container

● Reports when retrieving a deprecated service ($container->get /
\Drupal::service)

● Allows detecting if invalid or deprecated method is called from the
service

Entity integration

Entity mapping
● Contains a repository of

entity information

● Correct storage class
returned from entity type
manager

● Correct entity class
returned from entity
storage methods

● Contrib can define their
own mappings to be
included (link)

 drupal:

 entityMapping:

 block:

 class: Drupal\block\Entity\Block

 block_content:

 class: Drupal\block_content\Entity\BlockContent

 node:

 class: Drupal\node\Entity\Node

 storage: Drupal\node\NodeStorage

 taxonomy_term:

 class: Drupal\taxonomy\Entity\Term

 storage: Drupal\taxonomy\TermStorage

https://github.com/mglaman/phpstan-drupal#providing-entity-type-mappings-for-a-contrib-module

Example of entity storage type assertions

$etm = \Drupal::entityTypeManager();

assertType('Drupal\node\NodeStorage', $etm->getStorage('node'));

assertType('Drupal\user\UserStorage', $etm->getStorage('user'));

assertType('Drupal\taxonomy\TermStorage', $etm->getStorage('taxonomy_term'));

Example of entity storage method assertions

$nodeStorage = \Drupal::entityTypeManager()->getStorage('node');

assertType('Drupal\node\Entity\Node', $nodeStorage->create(['type' => 'page']));

assertType('Drupal\node\Entity\Node|null', $nodeStorage->load(42));

assertType('Drupal\node\Entity\Node|null', $nodeStorage->loadUnchanged(42));

assertType('array<int, Drupal\node\Entity\Node>', $nodeStorage->loadMultiple());

Entity queries
● Determines the array

return type for queries

array<int, string> vs.
array<string, string>

● Returns correct type if turned
into a count query.

● TODO! Verify that
accessCheck has been
invoked (now required in
10.0.x)

assertType(

 'array<int, string>',

 $nodeStorage->getQuery()

 ->accessCheck(TRUE)

 ->execute()

);

assertType(

 'int',

 $nodeStorage->getQuery()

 ->accessCheck(TRUE)

 ->count()

 ->execute()

);

kudos!
beram (Benjamin Rambaud) for the major contributions to the entity storage

dynamic return type extensions

https://brambaud.github.io/

Render arrays

Trusted callbacks

● Verifies callbacks are closures or implement TrustedCallbackInterface
or RenderCallbackInterface

● Checks #pre_render, #post_render, #access_callback, and
#lazy_builder

● Supports normal and service name callable format

● Warns if using a closure within a form class (serialization = 💥)

Loaded includes

Loaded includes

● Handles ModuleHandlerInterface::loadIncludes or the deprecated
module_load_include function

● Verifies that the extension exists

● Verifies the file exists

● Performs require_once to bring the file into scope to make the functions
within the file accessible

Miscellaneous
awesome

Class resolver
● Correct object types from the

class resolver

● getInstanceFromDefinition
will return an instance of the
correct class

● Allows proper inspections
from this dynamic class
instantiation

function workspaces_entity_type_build(array &$entity_types) {

 return \Drupal::service('class_resolver')

 ->getInstanceFromDefinition(EntityTypeInfo::class)

 ->entityTypeBuild($entity_types);

}

function workspaces_entity_type_alter(array &$entity_types) {

 \Drupal::service('class_resolver')

 ->getInstanceFromDefinition(EntityTypeInfo::class)

 ->entityTypeAlter($entity_types);

}

Entity access results
● Checks if calls to an entity

access method should return
AccessResultInterface or
bool

● Handles access,
createAccess, fieldAccess.

assertType(

 'bool',

 $accessControlHandler->access(Node::create(), 'view)

);

assertType(

 AccessResultInterface::class,

 $accessControlHandler->access(

 Node::create(),

 'view label',

 null,

 true

)

);

Extending @internal code

● Checks if a class extends @internal code outside of its namespace

● Only flags an error when using @internal outside of shared namespace

● Shared namespace? \Drupal\{Core|Component|module|theme}

● The second part of the namespace must match

How to add PHPStan
to your codebase

Use Composer to add PHPStan to require-dev

composer require --dev phpstan/phpstan \

 phpstan/extension-installer \

 mglaman/phpstan-drupal \

 phpstan/phpstan-deprecation-rules

Run PHPStan against custom modules

php vendor/bin/phpstan analyze \

 --level 2 \

 web/modules/custom

What’s on the
horizon?

What’s on the horizon?

● Better tracking of change records from Drupal core to make sure
phpstan-drupal has the rules or return types to PHPStan to detect the
change.

● Better support for entity fields and field properties

● Drush command to help generate entity mapping and field information
for phpstan-drupal 🤔

● And all of your suggestions 😄

Resources

#phpstan
Join the #phpstan channel on Drupal Slack.

GitHub bot will notify of new releases.

Links

● https://www.drupal.org/docs/develop/development-tools/phpstan

● https://phpstan.org/

● https://github.com/mglaman/phpstan-drupal

● https://beram-presentation.gitlab.io/php-static-analysis-101/

● https://www.twitch.tv/mglaman (live coding, Wednesdays 2PM US
Central)

https://www.drupal.org/docs/develop/development-tools/phpstan
https://phpstan.org/
https://github.com/mglaman/phpstan-drupal#providing-entity-type-mappings-for-a-contrib-module
https://beram-presentation.gitlab.io/php-static-analysis-101/
https://www.twitch.tv/mglaman

